Application of Artificial Neural Networks for Prediction of Natural Convection Heat Transfer from a confined Horizontal Elliptic Tube

نویسنده

  • A. O. Elsayed
چکیده

In this paper, simulation of natural convection heat transfer from a confined isothermal horizontal elliptic tube based on artificial neural network is presented. The experimental work with changing of all variables is time consuming and expensive and usually has problems associated with it. Experimental data used for the neural network was obtained by a Mach-Zehnder interferometer. In this study, various parameters have been used. Tube axis ratio, wall spacing and rayliegh number are inputs and average nusselt number is desired output. Multi-layer feedforward network was applied to simulate the steady condition of heat transfer rate distribution in described geometry. Results of network have excellent agreement with experimental data. Therefore, the network is used to predict the unseen data points within the range of experimental results. Keywords—Neural network, Back propagation, Nusselt number, Rayliegh number, Elliptic tube.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank

In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...

متن کامل

Natural Convection Heat Transfer From Horizontal Cylinders in a Vertical Arra Confined Between Parallel Walls

Laminar natural convection from an array of horizontal isothermal cylinders confined between two vertical walls, at low Rayleigh numbers, is investigated by theoretical and numerical methods. The height of the walls is kept constant, however, number of the cylinders and their spacing, the distance between the walls and Rayleigh number have been varied. The optimal spacing (confining walls) and ...

متن کامل

Application of artificial neural networks on drought prediction in Yazd (Central Iran)

In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...

متن کامل

Influence of Tube Arrangement on the Thermal Performance of Indirect Water Bath Heaters

Natural convection heat transfer from a tube bundle in the indirect water bath heaters is investigated. A computer-code is used for the solution of the governing equations of mass, momentum and energy transfer based on the SIMPLE-C algorithm. Simulations are carried out for the gas pressure station heater of Kermanshah city with various tube bundle arrangements. In order to validate the numeric...

متن کامل

On the natural convective heat transfer from a cold horizontal cylinder over an adiabatic surface

A steady two-dimensional laminar free convection heat transfer from a cold horizontal isothermal cylinder located above an adiabatic floor is studied both experimentally and numerically. In the experimental measurements the effects of cylinder distance from horizontal floor to its diameter (L/D) on heat transfer coefficient is studied for Rayleigh numbers of 3×105 and 6×105. Computations are ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009